快捷搜索:  

逻辑芯片,走向何方?

"逻辑芯片,走向何方?,这篇新闻报道详尽,内容丰富,非常值得一读。 这篇报道的内容很有深度,让人看了之后有很多的感悟。 作者对于这个话题做了深入的调查和研究,呈现了很多有价值的信息。 这篇报道的观点独到,让人眼前一亮。 " 账号设置我的关注我的收藏申请的报道退出登录登录搜索36氪Auto数字时氪将来消费智能涌现将来城市启动Power on36氪出海36氪研究院潮生TIDE36氪企服点评36氪财经(Finance)职场bonus36碳后浪研究所暗涌Waves硬氪媒体品牌企业号企服点评36Kr研究院36Kr创新咨询企业服务核心服务城市之窗行政部门服务创投发布LP源计划VClubVClub投资机构库投资机构职位推介投资人认证投资人服务寻求报道36氪Pro创投氪堂企业入驻创业者服务创投平台 首页快讯资讯推荐财经(Finance)科技(Technology)创新城市最新创投汽车(Car)企服专精特新直播视频专题活动搜索寻求报道我要入驻城市合作逻辑芯片,走向何方?半导体行业体坛·2024-02-19 09:40关注本文分析了10 种 7 纳米和 5 纳米级逻辑芯片。

在 2024 年 SEMI 世界战略研讨会上,我(指代本文作者Scotten Jones,以下同)从技术和经济(Economy)的角度审视十年后逻辑将走向何方。以下是我的演讲的讨论(Discuss)。

为了理解逻辑,我相信了解前沿逻辑器件的构成是有用的。TechInsights 提供了详细的封装分析报告,我为 10 种 7 纳米和 5 纳米级设备获取了报告,包括英特尔和 AMD 微处理器、Apple A 系列和 M 系列处理器、NVIDIA GPU 以及其他设备。

图 1 说明了芯片区域(die area)的构成。

图 1. 逻辑布局(Logic Layouts)

从图 1 中可以看出,逻辑部分占芯片面积( die area)略小于二分之一,内存部分略小于芯片面积的三分之一,而 I/O、模拟和其他部分则占平衡。我发现有趣的是,实际测量的 SRAM 内存面积比我通常听到人们谈论的片上系统 (SOC) 产品的百分比要小得多。右下角的图显示存在一个异常值,但除此之外,值紧密聚集。

单一逻辑几乎占据了芯片面积的一半,因此从设计的逻辑部分开始是有意义的。逻辑设计是使用标准单元(standard cell)完成的,图 2 是标准单元的平面图。

图2:标准单元

标准单元的高度通常用 Metal 2 Pitch (M2P) 乘以轨道(tracks)数量来表示,但从图的右侧可以看出,器件结构的横截面图也必须与单元高度相匹配并受到设备物理的限制。取决于接触式多晶硅节距 (CPP:Contacted Poly Pitch) 的单元宽度也是如此,从图的底部可以看到器件结构的横截面图,该结构再次受到物理约束。

图 3 显示了确定单元宽度和单元高度缩放实际限制的分析结果(Result)。我有一个演示文稿详细介绍了缩放限制,在该演示文稿中,图 2 和图 3 之间有数十张幻灯片,但由于时间有限,我只能展示结论。

图3:逻辑单元微缩

单元宽度缩放(Cell width scaling )取决于 CPP,图的左侧说明了 CPP 如何由栅极长度 (Lg:Gate Length )、接触宽度 (Wc:Contact Width) 和两个接触到栅极间隔物厚度 (Tsp:Contact to Gate Spacer Thicknesses) 组成。Lg 受泄漏限制,可接受泄漏的最小 Lg 取决于器件类型:具有单栅极的平面器件能够使用一个厚度未受限制(约为30nm左右)的沟道表面;FinFET 和水平纳米片 (HNS:horizontal Nanosheets) 限制沟道厚度(~5 nm),并分别具有 3 个和 4 个栅极。

最后,2D 材料引入了 1 nm 沟道厚度的非硅材料,并且可以生产低至约 5 nm 的 Lg。由于寄生效应,Wc 和 Tsp 的扩展能力都有限。最重要的是,2D 器件可能会产生约 30 纳米的 CPP,而当今的 CPP 约为 50 纳米。

单元高度缩放(Cell height scaling )如图右侧所示。HNS 提供单个纳米片堆叠来代替多个fins。然后,向具有 CFET 的堆叠器件的发展消除了水平 np 间距,并堆叠了 nFet 和 pFET。目前(Currently)的单元高度为 150nm 至 200nm,可以降低至约 50nm。

CPP 和单元高度缩放的结合可以产生每平方毫米约 15 亿个晶体管 (1500 MTx/mm²) 的晶体管密度,而当今的晶体管密度 300MTx/mm²。应该指出的是,2D 材料可能是 2030 年中后期的技术,因此 1,500 MTx/mm²不在此处讨论(Discuss)的时间范围内。

图 4 总结了英特尔、三星和台积电宣布的工艺。

图4:已公布的工艺节点

对于每个公司和年份,都会显示设备类型、是否使用背面电源、密度、功率和性能(如果有)。功耗和性能是相对指标,英特尔不提供功耗。

在图 4 中,领先的性能和技术创新以粗体突出显示。三星是第一个在 2023 年投入生产 HNS 的公司,英特尔要到 2024 年才会推出 HNS,台积电要到 2025 年才会推出。英特尔是第一个在 2024 年将背面电源投入生产的公司,三星和台积电要到 2026 年才会推出。

我的分析得出的结论是,英特尔凭借 i3 成为性能领先者,并在所示期间保持这一地位,台积电拥有功耗领先(英特尔数据不可用)和密度领先。

图 5 展示了我们(We)的逻辑路线图,并包括预计的 SRAM 单元尺寸(稍后将详细介绍)。

图5:逻辑路线图

从图 5 中,我们(We)预计 CFET 将在 2029 年左右推出,从而提高逻辑密度,并将 SRAM 单元尺寸缩小近一半(SRAM 单元尺寸缩小实际上已停止在前沿)。我们(We)预计到 2034 年逻辑密度将达到 ~757MTx/mm²。

逻辑晶体管密度预测和 SRAM 晶体管密度预测如图 6 所示。

图 6. 晶体管密度预测

逻辑和 SRAM 晶体管密度的缩放速度都在放缓,但 SRAM 的晶体管密度在更大程度上有所放缓,并且逻辑现在具有与 SRAM 相似的晶体管密度。

图 7 总结了 TSMC 与逻辑和 SRAM 相比的模拟缩放数据。模拟和 I/O 缩放也都比逻辑缩放慢。

图7:模拟和I/O缩放

对于较慢的 SRAM 以及模拟和 I/O 扩展,一个可能的解决方案是Chiplet。Chiplet可以达成更便宜、更优化的工艺来制造 SRAM 和 I/O。

图8:Chiplet

图8右侧的图来自我与Synopsys合着的2021年论文。我们(We)的结论是,即使考虑到增加的封装/组装成本,将大型 SoC 分解成Chiplet也可以将成本降低一半。

图 9 显示了逻辑、SRAM 和 I/O 的标准化晶圆和晶体管成本(请注意,该图已根据原始演示进行(Carry Out)更新)。

图9:成本预测

右图显示了标准化晶圆成本。逻辑晶圆成本针对金属层数量不断增加的全金属堆栈。SRAM 晶圆具有相同的节点,但由于 SRAM 的布局更为规则,因此仅限于 4 个金属层。I/O晶圆成本基于16nm-11金属工艺。我选择 16nm 来获得成本最低的 FinFET 节点,以确保足够的 I/O 性能。

右图是晶圆成本换算成晶体管成本。有趣的是,I/O 晶体管非常大,即使在低成本 16nm 晶圆上,它们(They)的成本也是最高的(I/O 晶体管尺寸基于 TechInsights 对实际 I/O 晶体管的测量)。逻辑晶体管成本在 2nm 处上升,这是第一个台积电 HNS 片节点,其微缩幅度不大。我们(We)预计第二代 HNS 节点在 14A 时的微缩会更大(这与台积电对其第一个 FinFET 节点所做的类似)。同样,第一个 CFET 节点的成本也增加了一个节点的晶体管成本。除了一次性 CFET 缩小之外,由于缩小有限,SRAM 晶体管成本呈上升趋势。该分析的底线是,尽管 Chiplet 可以提供一次性的好处,但晶体管成本的降低幅度将会不大。

下图是我们(We)得出的结论。

原文链接:

https://semiwiki.com/semiconductor-manufacturers/342094-iss-2024-logic-2034-technology-economics-and-sustainability/

本文来自微信公众号“半导体行业体坛”(ID:icbank),作者:Scotten Jones,36氪经授权发布。

该文观点仅代表作者本人,36氪平台仅提供信息存储空间服务。

+10

好文章,需要你的鼓励

半导体行业体坛特邀作者0收  藏+10评  论打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮微  博沉浸阅读返回顶部参与评论评论千万条,友善第一条登录后参与讨论(Discuss)提交评论0/1000你可能也喜欢这些文章晶圆代工,新战争EDA行业营收,逆风创历史(History)AI芯片帝国开战,Altman密会米国行政部门求助,孙正义急筹千亿美元豪赌内存芯片的疯狂可能将在2024年重演2024年AI芯片,竞争加剧2023年度PC市场体坛:集体摆烂、还是蓄势待发台积电“攻防战”一年狂赚4200亿,超级狠人黄仁勋首次击败英特尔三星,台积电成全球收入最高代工厂,豪掷200亿美元在日建厂最新文章推荐“股神级”证券大佬“栽”了什么才是有价值的学习?国内挣钱国外花?云南富豪李晓明家族卷入风波2024,短剧能否带来品牌营销新增量?“买光伏股亏麻了”,光伏板块价值是否被严重低估?河南发现大油田,能解决能源自给问题吗?火爆的海南春节,中免触底了吗?费大厨们”出手,整顿首都湘菜市场高合停产,被传解散始祖鸟为什么砸钱开了一个“博物馆”?|营销体坛半导体行业体坛特邀作者

最有深度的半导体新媒体,实讯、专业、原创、深度。

发表文章704篇最近内容逻辑芯片,走向何方?19分钟前晶圆代工,新战争1小时前存储芯片,苦尽甘来?2024-02-17阅读更多内容,狠戳这里下一篇通往AGI的第二条路

通用AI还有没有其它解法?

21分钟前

热门标签点网众筹融资物权众筹te国人币对美元汇率carbon深圳卫视深港沪港通电子展陈列师大事件卫视短期投资现金等价物yeezysloggi八佰伴德隆系电子表格任务计划王旭华立华立技师学院lgd战队h5游戏(Game)模糊控制控制理论模糊理论模糊算法关于36氪城市合作寻求报道我要入驻投资者关系商务合作关于我们(We)联系我们(We)加入我们(We)网站谣言信息举报入口热门推荐热门资讯热门产品文章标签快讯标签合作伙伴鲸准氪空间富途牛牛企服点评人人都是产品经理领氪36氪APP下载iOS Android本站由 阿里云 提供计算与安危服务 违法和不良信息、未成年人保护举报电话:010-89650707 举报邮箱:jubao@36kr.com 网上有害信息举报© 2011~2024 首都多氪信息科技(Technology)有限公司 | 京ICP备12031756号-6 | 京ICP证150143号 | 京公网安备11010502036099号意见反馈36氪APP让一部分人先看到将来36氪鲸准氪空间

推送和解读前沿、有料的科技(Technology)创投资讯

一级市场金融信息和系统服务提供商

聚焦全球优秀创业者,项目融资率接近97%,领跑行业

逻辑芯片,走向何方?

您可能还会对下面的文章感兴趣:

赞(828) 踩(2) 阅读数(2801) 最新评论 查看所有评论
加载中......
发表评论